Superharmonic Perturbations of a Gaussian Measure, Equilibrium Measures and Orthogonal Polynomials
نویسنده
چکیده
This work concerns superharmonic perturbations of a Gaussian measure given by a special class of positive weights in the complex plane of the form w(z) = exp(−|z| + U(z)), where U(z) is the logarithmic potential of a compactly supported positive measure μ. The equilibrium measure of the corresponding weighted energy problem is shown to be supported on subharmonic generalized quadrature domains for a large class of perturbing potentials U(z). It is also shown that the 2×2 matrix d-bar problem for orthogonal polynomials with respect to such weights is well-defined and has a unique solution given explicitly by Cauchy transforms. Numerical evidence is presented supporting a conjectured relation between the asymptotic distribution of the zeroes of the orthogonal polynomials in a semi-classical scaling limit and the Schwarz function of the curve bounding the support of the equilibrium measure, extending the previously studied case of harmonic polynomial perturbations with weights w(z) supported on a compact domain.
منابع مشابه
Relative Asymptotics of Orthogonal Polynomials for Perturbed Measures
We survey and present some new results that are related to the behavior of orthogonal polynomials in the plane under small perturbations of the measure of orthogonality. More precisely, we introduce the notion of a polynomially small (PS) perturbation of a measure. Namely, if μ0 ≥ μ1 and {pn(μj , z)}n=0, j = 0, 1, are the associated orthonormal polynomial sequences, then μ0 a PS perturbation of...
متن کاملOrthogonal polynomials in the normal matrix model with a cubic potential
We consider the normal matrix model with a cubic potential. The model is ill-defined, and in order to reguralize it, Elbau and Felder introduced a model with a cut-off and corresponding system of orthogonal polynomials with respect to a varying exponential weight on the cut-off region on the complex plane. In the present paper we show how to define orthogonal polynomials on a specially chosen s...
متن کاملA Characterization of Positive Quadrature Formulae
A positive quadrature formula with n nodes which is exact for polynomials of degree In — r — 1, 0 < r < « , is based on the zeros of certain quasi-orthogonal polynomials of degree n . We show that the quasi-orthogonal polynomials that lead to the positive quadrature formulae can all be expressed as characteristic polynomials of a symmetric tridiagonal matrix with positive subdiagonal entries. A...
متن کاملMultiple Orthogonal Polynomials on the Semicircle and Corresponding Quadratures of Gaussian Type1
In this paper multiple orthogonal polynomials defined using orthogonality conditions spread out over r different measures are considered. We study multiple orthogonal polynomials on the real line, as well as on the semicircle (complex polynomials orthogonal with respect to the complex-valued inner products (f, g)k = ∫ π 0 f(e)g(e)wk(e ) dθ, for k = 1, 2, . . . , r). For r = 1, in the real case ...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008